
UNIVERSITAT POLITÈCNICA DE

CATALUNYA(UPC)

UNIVERSITAT DE BARCELONA(UB)

UNIVERSITAT ROVIRA I VIRGILI(URV)

MASTER OF ARTIFICIAL INTELLIGENCE THESIS

Spatial Networks, Thresholded Random
Geometric Graphs, and Applications in
Electric Vehicle Infrastructure Networks

Author:
Cole MacLean

Supervisors:
Sergio Gomez

Joan T Matamalas
Dept. Enginyeria Informàtica

i Matemàtiques
Universitat Rovira i Virgili

A thesis submitted in fulfillment of the requirements
for the degree of Master of Artificial Intelligence

in

Complex Networks
Barcelona School of Informatics

June 16, 2017

http://www.upc.edu/
http://www.upc.edu/
http://www.upc.edu/
http://www.upc.edu/
http://cole-maclean.github.io/
http://deim.urv.cat/~sergio.gomez/index.php
http://urv.academia.edu/jtmatamalas
http://deim.urv.cat/
https://www.fib.upc.edu/


i

UNIVERSITAT POLITÈCNICA DE CATALUNYA(UPC)
UNIVERSITAT DE BARCELONA(UB)

UNIVERSITAT ROVIRA i VIRGILI(URV)

Abstract

Artificial Intelligence

Barcelona School of Informatics

Master of Artificial Intelligence

Spatial Networks, Thresholded Random Geometric Graphs, and Applications in
Electric Vehicle Infrastructure Networks

by Cole MacLean

The importance of spatial aspects in real-world complex networks has become widely
studied in recent years, with a number of new models codifying spatial embeddings
into their definitions and entire conferences dedicated to individual Spatial Network
models RGG Conference 2016. In this paper, we explore the recent advances in Spatial
Network modeling and provide 3 main contributions: 1. A new classification of ex-
isting Spatial Network models based on their shared parameterizations 2. The intro-
duction of a new Spatial Network model - Thresholded Random Geometric Graphs
to better capture the constraints of some real-world system 3. The real-world appli-
cation and comparison of advanced Spatial Network models to the Electric Vehicle
infrastructure network of Tesla’s North American Supercharger stations. We show
that our new model outperforms existing Spatial Network models in predicting the
future structure of the Tesla Supercharger network, and claim that it is better suited
for modeling networks of similar structure where a physically limiting maximum
distance exists that prevents any connections past that distance, while maximizing
some utility of the entire weighted network.
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Chapter 1

Introduction

1.1 Motivation and Goals

The motivation for this work is routed in my background as a Chemical Engineer.
More concretely, as a Process Engineer, granted the power to wield and control com-
plex, dynamic systems and mold them in such a way as to create real and valuable
products out of apparent chaos. As any good engineer should, I’m constantly on
the lookout for new tools, models and concepts to expand the types of systems I can
understand and tame. This constant search led me into the discipline of Artificial
Intelligence and is why I enrolled into the M.Sc. of Artificial Intelligence program
at the UPC, which further led be into the world of Complex Networks, a domain
of a near-infinite power to express almost any system. The malleability of Complex
Networks, their successful ability to model real-world systems that I find interesting
and compelling to study, and their intuitive formulation and structure make these
models critical tools for any engineer’s toolbelt.

My focus has always been towards the applied side of scientific study, only skim-
ming the mathematical details and instead jumping straight to solving actual real-
world problems, and that’s how the core work of this paper began. I’ve long been
a fan of Elon Musk and his many companies, especially Tesla, his electric car com-
pany. Tesla has a key differentiator, an electric car Supercharging network for long
distance travel across continents. Being an avid member of the community, I began
to see many people wonder when the Tesla Supercharger network would expand
to their city and realized I could solve this with the skills I was developing in my
Master’s degree, setting off the exploration, results and analysis for the attempt to
solve this problem as the main topic of this paper.

Using the techniques of Complex Networks, I originally probed the structure of the
Tesla Supercharger Network in an extensive Exploratory Data Analysis. This work
gave me the intuition needed to develop a predictive model using Utility Theory
taught in a class I took on Multi-Criteria Decisions Support Systems, and managed
to produce promising predictive results. Although seemingly impressive at the time,
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the resulting model has not been able to continue its performance now that the Su-
percharger network has grown considerably from the 200 at the time of that previous
work to the 418 that exist today. Identifying that more robust tools are required to
truly capture the growing structure of the Supercharger network, I’ve once again
turned to Complex Networks in the hopes of finding the right hammer for the job.
The models developed, experiments observed and theory discussed in this paper
are all derived from this goal of discovering what is possible to predict about the
future of the Supercharger network given its historical and current structure. This
goal of prediction given a set of data is a shared theme across many of the courses
in the M.Sc. of Artificial Intelligence program of the UPC, and I’ve drawn from my
collective experience in this Masters to perform the work of this paper.

The ultimate goal of this paper is to develop a mode capable of capturing the under-
lying structure of the Tesla Supercharger network and provide the ability to predict
the future structure. This main objective comes with 2 necessary sub-tasks that are
also goals of this study, which are to identify and explore existing models that may
be capable of achieving the main goal and the development of a new model and the-
ory with the potential of outperforming existing models in this task. The following
chapters are presented as the realization of these goals.

1.2 Organization

This paper has been organized into 7 separate chapters, including this brief intro-
duction as Chapter 1. Chapter 2 provides the background in Complex Network
theory needed and heavily relied upon in future chapters. Chapter 3 introduces the
Spatial Networks sub-domain of Complex networks which is the main focus of this
paper, and is where our new classification of these Spatial Network models can be
found. Chapter 4 provides a discussion on some of the most exiting application of
Spatial Network models and provides further motivation for their study. Chapter
5 introduces the new model presented in this paper, Thresholded Random Geomet-
ric Graphs and provides analytical and experimental conditions for connectivity of
this new model. Chapter 6 is the realization of the final goal of this paper, provid-
ing a full analysis of the Tesla Supercharger network and shows the final results of
predicting its future structure using the proposed model of this paper compared to
existing models across multiple evaluation metrics. Chapter 7 concludes the work
with a final discussion of the results and future work.
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Chapter 2

Background

The domain of Complex Networks has been inspired by the study of real-world
systems that can be represented by a set of nodes or vertices connected by edges
with non-trivial structural properties. Systems taking the form of Complex Net-
works abound, including: the Internet, social networks, organizational networks,
metabolic networks, food webs, roadways, infrastructure networks, brain connec-
tivity and neural networks (Newman, 2003).

FIGURE 2.1: A small example network with eight vertices and ten
edges Newman, 2003

The closely related and overlapping field of Random Graphs was initiated in 1959-
1960 in “On the evolution of random graphs” 1960 with the definition of the Erdős-
Rényi (ER) Random Graph, where a pair taken from N vertices are connected by an
edge with probability, p.

In this section, we present an overview for the key concepts in Complex Networks
and Random Graphs used throughout this paper.
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2.1 Basic Definitions

Here we define some key definitions and concepts of various terms used in Complex
Networks and this paper.

• Vertex or Nodes are the fundamental units of a networks and can be used to
represent any entity and can have one or many attributes.

• Edges are the links that connect nodes and can be undirected or directed if
there exists directionality in the representation of connected nodes

• Degree is count of the number of edges connected to a node

• A Component of the network is the set of nodes that can be reached from each
other node by paths running along edges of the graph

• The Giant Component is the component of the network having the largest
count of connected nodes

2.2 Degree Distributions and Scale-Free Networks

The key characteristic of degree for individual nodes in a network can be expanded
to produce a distribution of degrees for all nodes in the network which is known as
the Degree Distribution of the network. Formally, we can define the degree distri-
bution by defining pk to be the fraction of vertices in the network that have degree
k. Equivalently, pk is the probability that a vertex chosen uniformly at random has
degree k. The histogram produced by the degree of each node is the degree distri-
bution (Newman, 2003).

A networks degree distribution can be used as a property of comparison amongst
many other networks and investigate similarities between real-world networks from
diverse domains. Many real-world networks have been shown to have power-law
degree distributions, which are often referred to as Scale-Free networks, where the
degree, k of a node is drawn from a probability distribution, pk parameterize by a
power-law exponent, γ shown in Equation 2.1 (Barabási, 2009).

pk ∝ k−γ (2.1)

One of the most well studied models proposed to explain the growth of a network
in producing power-law degree distributions is the Barabási-Albert Preferential At-
tachment model (Barabási and Albert, 1999). Known as "the rich get richer" mech-
anism, the model proposes a growth model of networks were the probability for a
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node, N to connect to a node, m that is already in the network increases with the de-
gree of node m, resulting in power-law degree distributions for networks generated
with this model.

2.3 Average Degree and Connectivity

The Average Degree of a network,〈k〉, is defined as the summation of all degrees for
each node,ki, in the network divided by the total number of nodes in the network,
N , as described in Equation 2.3.

〈k〉 =
1

N

N∑
i=1

ki (2.2)

A network is said to be Connected when all N nodes of the network exist in the sin-
gle component of the network. The percentage of nodes within the giant component
of a network is an often used measure to describe how well connected a network is.

2.4 The Erdős-Rényi Random Graph

The Erdős-Rényi Random Graph is a simple model of a network whereN number of
nodes are taken and connect each pair (or not) with probability, p. Many properties
of the Erdős-Rényi Random Graph are exactly solvable in the limit of large graph
size, with the model having a Poisson degree distribution shown in Equation ??
(Newman, 2003)

pk =

(
N

k

)
pk(1− p)n−k (2.3)

The expected structure of the random graph varies with the value of the probability
of connection parameter,p and the critical behavior of this parameter has been well
studied.

2.5 Phase Transitions and Critical Phenomena

The study of Phase Transitions and Critical Phenomena in Complex Networks, where
a sharp transition in a system property exists as a function of one of its parameters,
has been a cornerstone of studies in Random Graphs and Complex Networks since
the introduction of classical random graphs by Erdős and Rényi who described the
structural phase transition of the emergence of a giant connected component (Erdős
and Rényi, 1961). Erdős and Rényi demonstrated that the random graph possesses a
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phase transition, from a low-density, low-p state in which there are few edges and all
components are small to a high-density, high-p state in which an extensive fraction
of all vertices are joined together in a single giant component. This phase transition
is depicted in Figure 2.2.

FIGURE 2.2: The mean component size (solid line), excluding the gi-
ant component if there is one, and the giant component size (dotted

line), for the ER random graph (Newman, 2003)

Critical phenomena in networks include a wide range of issues: structural phase
transitions, the emergence of critical scale-free network architectures, various per-
colation phenomena, and epidemic thresholds (Dorogovtsev, Goltsev, and Mendes,
2008).

2.6 Critical Scaling and Strong vs Weak Zero-One Laws

For convenience we introduce the notation of P (N,ΠN ) to indicate the probability
for any graph, G of size N parameterized by scaling Π to be connected.

A Scaling, Π is defined as any mapping Π : N0 → R+, and can be used in finding
conditions for the probability of being connected on such scalings to ensure either
limN→∞ P (N,Π) = 1 or limN→∞ P (N,Π) = 0. Typically there exist scalings, deemed
critical, which act as a boundary in the space of scalings between these two extremes
(Makowski and Yagan, 2013). The terminology of Strong and Weak Zero-One laws
was first developed by McColm for random graphs on a line segment (McColm,
2004) and adapted by Makowski for Random Threshold Graphs. A strong zero-one
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law is said to hold (for graph connectivity) with critical scaling Π∗ if for any scaling
Π satisfying:

lim
N→∞

ΠN

Π∗N
= c (2.4)

for some c > 0, we have

lim
N→∞

P (N,ΠN ) =

1 if 0 < c < 1

0 if 1 < c
(2.5)

Any scaling Π∗ satisfying Equations 2.4 and 2.5 is called a strong critical scaling.

Alternatively, a weak zero-one law is said to hold (for graph connectivity) with crit-
ical scaling Π∗ if for any scaling Π we have:

lim
N→∞

P (N,ΠN ) =

1 if limN→∞
ΠN
Π∗
N

= 0

0 if limN→∞
ΠN
Π∗
N

=∞
(2.6)

Any scaling Π∗ satisfying Equation 2.6 is called a weak critical scaling.

Figure 2.3 depicts an example strong and weak critical scaling phenomena for the
connectivity of Random Threshold Graphs for different weight distributions with
the model parameter, θ being substituted for Π as the scaling parameter . The weak
nature of the zero-one law in the right pane of 2.3 is evident from the figure since
P (N, cθ∗N ) = 1 only for 0 < c < 0.3, becoming close to zero only after c > 8 – Contrast
this with the strong zero-one laws observed in the left pane (Makowski and Yagan,
2013).

FIGURE 2.3: Example strong (left) and weak (right) zero-one thresh-
olds from (Makowski and Yagan, 2013) for critical scaling of connec-

tivity in Random Threshold Graphs
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Chapter 3

Spatial Networks

A sub-domain of Complex Networks known as Spatial Networks attempts to bet-
ter model real-world networks by allowing the addition of spatiality into the mod-
els, a consideration not present in conventional Random Graphs. Many real-world
complex systems have spatial components constraining the network structures these
types of systems can produce. Infrastructure networks such as transportation, elec-
trical, and telecommunication systems, social networks and even our own synaptic
networks are all embedded in physical space. Spatial Networks provide a frame-
work for network models having spacial elements, where nodes are embedded in
space and a metric is incorporated that influences the probability of connection be-
tween nodes. Typically, the probability of connection is a decreasing function of
the metric, with most models assuming Euclidean distance in 2-dimensions or 3-
dimensions. The intuition of most Spatial Network models propose that there exists
an increasing cost of connection between nodes that are further apart, which is a
likely element for most spatially embedded systems, such as infrastructure or bio-
logical networks. Figure 3.1 highlights the spatial embeddings of real networks.

FIGURE 3.1: Artist rendering of the human brain, highlighting the
spatial embedding of complex networks
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3.1 Characteristics of Spatial Networks

Although there has been a recent surge in interest for Spatial Networks, likely caused
by the availability of datasets for large networks and the computational power re-
quired to analyze them, Spatial Networks were actually long ago the subject of many
studies in quantitative geography and many modern questions in the complex sys-
tem field are actually at least 40 years old (Barthélemy, 2011). These past few decades
have seen the development of many Spatial Network models capable of construct-
ing a surprising variety of network structures with characteristics distinctly different
than those of traditional random graphs. Interesting properties arise by the addition
of spatial components to network models that are common across some of the most
important classes of Spatial Network models.

The addition of spatial constraints limits the tendency for global hubs, where a few
nodes are highly connected with far reaching connections across the network, a
property utilized in the Barabási-Albert preferential attachment model used as a
mechanism to explain the emergence of scale-free powerlaw degree distributions
of many real-world networks (Barabási and Albert, 1999). However, many Spatial
Network models have proofs for the conditions on the model that do generate scale-
free powerlaw degree distributions even with the limiting hub generation tendency
of Spatial Networks, such as in the introduction paper for the Geometric Threshold
Graph model (Masuda, Miwa, and Konno, 2004). The usual underlying assump-
tion of increasing connection cost with distance also favors the generation of cliques,
causing large clustering coefficients in many Spatial Network models, as close nodes
generally tend to become fully attached to each other. This tendency can also lead
to large average shortest paths between nodes as local nodes are highly connected,
but the allowance for long-range shortcuts in many Spatial Networks can recover
the small average shortest path of small-world networks (Barthélemy, 2011). These
unique properties of Spatial Networks, the ability to reconcile these models with
empirical real-world network data and their physical realism make them an exciting
and interesting domain of study.

3.2 Spatial Network Models

The potential application of Spatial Networks to such a wide variety of real-world
systems has motivated substantial research into these networks, with many unique
but closely related models being proposed with theoretical proofs for many of their
network properties. The Spatial Networks review article by (Barthélemy, 2011) pro-
vides a comprehensive overview of the field and reviews many of the most impor-
tant theoretical proofs for many Spatial Network models. Here we introduce and
define some of the most common and recent Spatial Network models developed so
far. We first define some terms and notation used in the Spatial Network models.
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P (X) - The spatial distribution dictating how the coordinates of the nodes are sam-
ple for placement onto the spatial embedding

R - The maximum connection distance

P (dij) - The probability of edge connection as a function of the distance, dij , between
nodes i,j where i 6= j

θ - The node weight threshold for connection

Eij indicates an edges exists between nodes i and j.

3.2.1 Random Geometric Graphs (RGG) - R

FIGURE 3.2: A 2D Random Geometric Graph with N = 500 and 〈k〉 =
5 (Dall and Christensen, 2002)

A d-dimensional Random Geometric Graph is a graph where each of the N nodes
is assigned random coordinates in the box [0, 1]d, and only nodes ‘close’ to each
other are connected by an edge.(Dall and Christensen, 2002). Any node within or
equal to the maximum connection distance, R, is a connected node and the struc-
ture of the network is fully defined by R. RGGs, similar to Unit Disk Graphs (Clark,
Colbourn, and Johnson, 1990), have been widely used to model ad-hoc wireless net-
works (Nemeth and Vattay, 2003). An edge, Eij exists according to Equation 3.1

Eij = dij ≤ R (3.1)
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One of the simplest and most well studied of the Spatial Networks, Random Geo-
metric Graphs have found many real-world applications and entire conferences are
now detected to this single Spatial Network model RGG Conference 2016.

3.2.2 Waxman Graphs - P (dij)

Waxman Graphs are the spatial generalization of ER random graphs, where the
probability of connection of nodes depends on a function of the distance between
them (Waxman, 1988). The original edge probability function proposed by Waxman
is exponential in dij , providing two connection probability tuning parameters, α and
β provided in Equation 3.2.

Eij = P (dij) = βe−dij/Lα (3.2)

Where L is the maximum distance between each pair of nodes. The shape of the
edge probability function, P(dij), plays the key role in determining the structure of a
Waxman graph.

3.2.3 Random Threshold Graphs (RTG) - θ

A simple graph G is a threshold graph if we can assign weights, drawn from a weight
distribution, f(w), to the vertices such that a pair of distinct vertices are connected
exactly when the sum of their assigned weights is or exceeds a specified threshold,
θ (Reilly and Scheinerman, 2009). Threshold Graphs are not themselves Spatial Net-
works, as they do not incorporate a specific geometry or metric, but they introduce
the ability to consider node weights as part of the network model which is utilized
by other Spatial Network models such as Geometric Threshold Graphs.

Eij = (wi + wj) ≥ θ (3.3)

3.2.4 Geometric Threshold Graphs (GTG) - P (dij), θ

Geometric Threshold Graphs are the geographical generalization of Random Thresh-
old Graphs, where a pair of vertices with weights wi, wj drawn from a weight distri-
bution f(w), and a distance dij are connected if and only if the product between the
sum of weights wi and wj with the edge connection function, P (dij), is greater than
or equal to a threshold value, θ (Masuda, Miwa, and Konno, 2005).

Eij = (wi + wj)P (dij) ≥ θ (3.4)
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3.2.5 Soft Random Geometric Graphs (SRGG) - R, P (dij)

A recent extension of Random Geometric Graphs couples the influence of distance
between nodes that are within the maximum connection distance,R, to better model
real-world systems where node proximity does not necessarily guarantee a connec-
tion between ’close’ nodes. In Soft Random Geometric Graphs, the probability of
connection between nodes i and j is a function of their distance, dij , if dij ≤ R. Oth-
erwise, they are disconnected (Penrose, 2016).

Eij =

P (dij) if dij ≤ R

0 if dij > R
(3.5)

3.3 Shared Model Parameter Classification

Here we investigate the relationships between the introduced Spatial Network mod-
els and propose a novel classification of these models by considering their shared pa-
rameterization. Specifically, we show that the Spatial Network models are obtained
by combinations of only 3 parameters, R, P (dij) and θ plus the spatial distribu-
tion for node embedding, P (X). Figure 3.3 shows the relationships between Spatial
Network Models connected by their shared parameterizations and highlights with
dashed lines the new model proposed in this paper.

FIGURE 3.3: Spatial Network Model Classification
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The Spatial Network classification of Figure 3.3 provides researchers an intuitive in-
troduction into the field of Spatial Networks and highlights patterns in their formu-
lations. It also presents the identification of potential gaps in current model formu-
lations, including the consideration for a model combining the maximum distance
parameter, R with the influence of connection thresholds, θ, which is the parameter-
ization for the model introduced in this paper in Chapter 5.
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Chapter 4

Applications of Spatial Networks

With the definitions of common Spatial Networks enumerated, we explore the cur-
rent and most successful applications of these models to real-world systems, high-
lighting the motivation for studying these useful mathematical constructs and the
need for further development of these models.

4.1 Transportation and Infrastructure Networks

We start with one of the most commonly studied class of networks, and the category
for the motivating example of this paper discussed in Section 6.1 are Transporta-
tion and Infrastructure networks, where junctions are dotted around towns, cities,
countries or even globally and are physically connected to provide some means for
the transfer of atoms, bits or people from one place to another. The spatial nature
of Infrastructure Networks is immediately evident by their definition of connecting
distant locations, and the underlying assumption of many Spatial Network models
where the cost of connection increases is intuitive in many real-world Transporta-
tion Networks, such as the cost of building roads or train lines in highway and rail
networks.

The classic way of representing a transportation networks and the construction of
their topological structures was discussed by Kurant and Thiran, who proposed a
simple representation of considering the stations as nodes and the connections as
the edges of the network (Kurant and Thiran, 2006). A well studied example us-
ing this representation is that of Airline networks, where the nodes are airports and
the links are the different direct air traffic routes provided by particular airlines.
Airline networks present interesting spatial aspects, as they have unique local na-
tional structure, but have grown to international scales, which have been shown
to be scale-free structures but with anomalous centrality caused by more than geo-
graphic constraints alone (Guimera et al., 2005).

Another common example for the use of Spatial Networks in transportation systems
is their application in the study and development of road and highway networks.
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Recent empirical studies have discovered surprising similarities in road networks
between different cities. In (Lämmer, Gehlsen, and Helbing, 2006), the others dis-
cover powerlaw distribution in the road networks of Germans 20 largest cities. In
(Cardillo et al., 2006), the authors use Spatial Networks to analyze the structural
properties of 21 world city and were able to classify that cities of the same class,
ex. grid-iron or medieval, exhibit roughly similar properties. In (Crucitti, Latora,
and Porta, 2006), the authors use Spatial Networks to provide extended visualiza-
tion and characterization of the city structure and propose the interesting results
that self-organized cities exhibit scale-free properties similar to those found in non-
spatial networks, while planned cities do not. The application of Spatial Networks
in urban and road design has been one of the most notorious use cases which is
likely to continue and expand.

Only two of the well studied classes of Transportation and Infrastructure Networks
using Spatial Networks have been discussed here, but many others including sub-
way and metropolitan public transport networks, rail, electric and utility grids and
the countless other systems that makeup the modern world are using the models
and theory discussed in this paper.

4.2 Neuroscience

FIGURE 4.1: Networks of the Brain Textbook Cover (Sporns, 2010)

Governments, research institutions and private companies are spending billions to
study and understand the human brain, with the hope of discovering the biologi-
cal mechanisms that contribute to devastating brain diseases, inspire new compu-
tational paradigms and open the door to technologies only dreamed of in science
fiction, such as digital-brain Neural Lace interfaces (Elon Musk enters the world of
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brain-computer interfaces). The rewards of these research efforts are sure to revolu-
tionize humanity, but the humbling complexity of the brain created over evolution-
ary timescales, puts this project beyond some of the most challenging faced in our
history, and the scope of the problem continues to grow as we discover new com-
plexities at every layer. Only recently, studies have shown that the accepted dogma
that every cell in an individual has the same DNA may not be true, with every neu-
ron potentially having a unique mutation, which has the potential to multiply our
current estimates for the complexity of the human brain by orders of magnitude (Sci-
entists Surprised to Find No Two Neurons Are Genetically Alike), inspiration and tools
from a wide variety of disciplines. One of these tools that is gaining popularity in
the field of neuroscience is the application of Spatial Networks in understanding the
Complex Network structures of the human brain. Figure 4.2 highlights some of this
complexity and the Spatial Network dimension that is the focus of this paper.

FIGURE 4.2: The multi-scale brain (Betzel and Bassett, 2016)

The application of Complex Network theory to neuroscience has been around since
humans first began studying the brain, with the first clear, recognizably scientific
representations of the human brain being prototype anatomical maps (Papo et al.,
2014). Recent successes of using Complex Networks to understand the brain in-
clude identifying rich club neurons of locomotor circuits in Caenorhabditis elegans,
indicating the importance of these specific neurons and suggesting that this may be a
general and scale-invariant principle of brain network organization (Towlson et al.,
2013), topological revelations of hierarchically organized structural systems in the
functional connectivity of the brain (Stephan et al., 2000) and defining the commu-
nity structure of the brain connectome (Reus et al., 2014).
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This model of connection probability as a function of distance inherent in many
Spatial Network models is equivalent to the "wiring-cost" model of brain connec-
tivity, an extensively studied optimization model of neuronal networks (Bullmore
and Sporns, 2012). Recent studies have shown the importance of considering spatial
relations between cortical regions of the brain, and have used spatial patterns to dis-
cover similarities between monkey, human and mouse cortex (Song, Kennedy, and
Wang, 2014).

Being the simplest model, Random Geometric Graphs have found many applica-
tions in neuroscience. In (O’Dea, Crofts, and Kaiser, 2013), the use of the RGG
model is applied to detailed neuro-imaging data to define a network whose spa-
tial embedding represents accurately the folded structure of the cortical surface of a
rat brain and investigate the propagation of activity over this network under simple
spreading and connectivity rules and conclude that studies which omit physiologi-
cal network structure risk simplifying the dynamics in a potentially significant way,
highlighting the importance of Spatial Networks as models of brain functions. An-
other paper comparing the ability of different random network models in explaining
the functional brain network structure of an fMRI dataset composed of 908 individ-
uals diagnosed with autism and Asperger, showed the RGG model’s ability to com-
petitively discriminate the real network structure compared to traditional random
network models (Fujita, Vidal, and Takahashi, 2017). Other studies have shown the
high clustering coefficient of structural brain connectivity that can be at least partly
attributed to the spatial embedding of the brain and which RGGs can better describe
than traditional random network models (Gastner and Ódor, 2016). All of these pa-
pers have been published in the past 5 years, and there has been an acceleration in
papers describing the importance of spatial embedding in network models of brain
connectivity.

The excellent review article by Bullmore and Sporns, (Bullmore and Sporns, 2012)
the authors detail the high cost of long neural links in different brain regions, and
evaluate hypothetical benefits of creating these links. This type of long distance spa-
tial consideration in link connection is precisely the underlying assumption of many
Spatial Network models. Two closely related papers inspired by the work of Bull-
more and Sporn, discover the so called “Exponential Distance Rule” (EDR), where
neuronal connections exhibit an exponential decay as function of the projection dis-
tance between cortical areas, mimicking the exponential form of connection proba-
bility originally proposed by Waxman. Both papers highlight the empirical evidence
supporting the need for network models to consider spatial embeddings (Ercsey-
Ravasz et al., 2013) (Horvát et al., 2016). In (Alexander-Bloch et al., 2012), the au-
thors directly studied the impact of different connection probabilities as functions of
euclidean distance in the resting-state functional magnetic resonance imaging brain
networks of 20 healthy volunteers and 19 patients with childhood-onset schizophre-
nia and argue that the data are consistent with the interpretation that spatial and
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topological disturbances of functional network organization could arise from ex-
cessive “pruning” of short-distance functional connections in schizophrenia. The
empirical evidence of decreasing connection probability as a function of distance in
structural and functional brain networks, the application to brain wiring cost models
and the success of Waxman and Geographical Threshold Graphs in modeling simi-
lar network structures is proving it to be a powerful tool in modeling many areas of
the brain.

Complex Network theory is a young field, and the extension to Spatial networks is
even less mature. The adoption of these tools is only now beginning to accelerate in
the domain of neuroscience. In the extensive Brain Graphs review by Bullmore and
Basset, they comment "there are many methods by which topological and geomet-
ric measures could be combined; for example, we can weight topological edges by
physical distance between nodes for weighted network analysis. We consider that
this topo-physical mapping of brain networks is likely to become of considerable
interest in the future, although it has not yet been much developed." (Bullmore and
Bassett, 2011), mimicking the intuition of the more advance Spatial Network models
introduced in recent years, including the new model introduced in Section ?? of this
paper.

The need to consider the spatial embedding of brain networks is becoming increas-
ingly important in discovering physically realistic models of structural and func-
tional brain connectivity. The recent and ongoing advances in Spatial Network the-
ory and their adoption in neuroscience is sure to continue, and these diverse disci-
plines will continue to grow together. Both disciplines are entering a stage of matu-
rity where their combination will accelerate the advances of both fields, as the appli-
cation to neuroscience informs promising areas for theoretical Spatial Network re-
search, and emerging theoretical models will propel new advances in neuroscience.
The complexity challenge in neuroscience is daunting, but the advancement of pow-
erful tools like Spatial Networks provide footholds to continue peeling away and
understanding all layers of the human brain.

4.3 Other Applications

The most obvious and well studied applications of Spatial Networks are probably
the ones discussed above, but their is a diverse set of industries and application
using Spatial Networks. In (Lambiotte et al., 2008), as a measure of social ties, Lam-
biotte used mobile phone data for 3.3 million customers in Belgium to measure the
impact of geography on social ties. A similar study by (Liben-Nowell et al., 2005)
use Spatial Networks to find a powerlaw decay in social ties as a function of dis-
tance, highlighting the need for considering spatiality in social networks. Further
afield, Random Geometric Graphs have been used in robot planning and navigation
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(Solovey and Halperin, 2016). Spatial Networks are even find applications in the
newly emerging "sharing economy", with a study on the structure of bicycle sharing
networks (Austwick et al., 2013). The use-cases and applications of Spatial Networks
is clearly valuable and diverse, and highlights the motivation of this work and in-
forms the development and application of a new Spatial Network model presented
in the follow chapters.
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Chapter 5

Thresholded Random Geometric
Graphs

5.1 Model Introduction and Definition

We present a new Spatial Network model extending Random Geometric Graphs
to incorporate the threshold parameter of Random Threshold Graphs, θ, termed
Thresholded Random Geometric Graphs (TRGG). The motivations for developing
this model are two-fold: maintaining the practical simplicity and physical realism
of the Random Geometric Graph model, while providing the ability to add the in-
fluence of network weights to the model to allow a more faithful representation of
real-world systems. The underlying hypothesis of this model is that there exists a
maximum distance at which connections between nodes can be made, and within
that maximum distance the connection is determined by the quality or fitness of
a node in making a good connection, measured by its respective weight. Pairs of
nodes that have sufficient sum total weights above the threshold parameter, θ, are
connected. The introduction of the new model parameterized by the combination of
the Spatial Network parameters R and θ fills in a gap of the classification presented
in Figure 3.3 and is highlighted with dotted-lines in the updated classification of
Figure 5.1.
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FIGURE 5.1: Spatial Network Model Classification

The types of real-world systems motivating the Thresholded Random Geometric
Graphs model are those where the probability of connection does not depend on
the distance between the connecting nodes, but a physically limiting maximum dis-
tance exists that prevents any connections past that distance, while the system seeks
to maximize some utility of the entire weighted network. Examples of systems hav-
ing these properties include those that have on-board energy sources such as fuel-
tanks or batteries, that are depleted by displacement to some maximum range like
automobiles or trains and require refueling stations in desirable locations. Other
systems are industrial processes limited by physics, such as pipeline or HVAC sys-
tems where pressure losses are incurred to some maximum distance before pumping
stations are required. Even the motivating example for Random Geometric Graphs,
Ad-Hoc Wireless Networks by (Nemeth and Vattay, 2003), can be represented with
this new model to allow the consideration of which nodes to make connections for
optimal routing given their respective connection utility weights.

Equation 5.1 formalizes the definition of Thresholded Random Geometric Graphs,
where the edge, Eij , exists if the distance, dij for nodes i and j is less than or equal
to the maximum distance, R, and their summed weights, wi, wj , are greater than or
equal to θ.

Eij =

(wi + wj) ≥ θ if dij ≤ R

0 if dij > R
(5.1)
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5.2 Properties of Thresholded Random Geometric Graphs

In this section, we study the connectivity of the newly proposed model and com-
ment on the critical scaling behavior for various parameterizations of the model and
provide estimates for the connectivity of a TRGG under the specified conditions of
this section. For all results in this section, and exponential and Pareto weight dis-
tribution described in Equations 5.2 and 5.3 are assumed and nodes are uniformly
embedded onto the unit square exemplified in Figure 5.2. Distances, dij between
nodes i and j are Euclidean. Non-uniform spatial distributions or considered in
subsequent sections.

f(w) = λe−λw (5.2)

f(w) =
λ

wλ+1
(5.3)

FIGURE 5.2: Example embedding of N = 5000 uniformly distributed
nodes on the unit square

5.2.1 Connectivity of Random Geometric Graphs

We first revisit the connectivity theory of Random Geometric Graphs, since the min-
imum connection distance, R, where Random Geometric Graphs first begin to be-
come fully connected will be the same for Thresholded Random Geometric Graphs.

In (Gupta and Kumar, 1998), the authors prove the critical minimum value ofR = Rc

that ensures connectivity of the network as a function of N is of the form described
in Equation 5.4.
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Rc =

√
log(N)

πN
(5.4)

Figure 5.3 depicts the phase transition in connectivity of Random Geometric Graphs
for different networks of size N , highlighting the distinct relationship between the
critical R value for the emergence of the giant component as a function of N as
described in Equation 5.4.

FIGURE 5.3: Connectivity Phase Transition of Random Geometric
Graphs at Various Networks of Size N

5.2.2 Connectivity of Threshold Graphs

At the upper limit of R equal to the maximum length scale of the spatial embed-
ding, which for the unit square is

√
2, all vertices of the network are within the

maximum distance, R, from each other and the model devolves into the Random
Threshold Graph introduced in Section 3.2.3. The condition for connectivity of a
Random Threshold Graph is dictated by whether the summation of the minimally
and maximally weighted vertex exceed the threshold parameter, θ. If the minimally
weighted vertex does not exceed θ with the maximally weighted vertex, it fails to
with all other vertices and remains an isolated vertex, rendering the network dis-
connected (Reilly and Scheinerman, 2009). When N is sufficiently large, the weight
w uniquely determines the vertex degree k for the given weight distribution, f(w),
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by Equation 5.5 and the degree distribution is described by Equation 5.6 (Masuda,
Miwa, and Konno, 2004).

k = N [1− F (θ − w)] (5.5)

p(k) = f(w)
dw

dk
=
f [θ − F−1(1− k

N )]

Nf [F−1(1− k
N )]

(5.6)

In (Makowski and Yagan, 2013), the authors prove the existence of strong and weak
zero-one scaling laws for threshold graphs, with exponential weight distributions
having strong zero-one laws and powerlaw weight distributions having only a weak
zero-one laws a critical scalings, θ∗n, according to Equations 5.7 and 5.8 respectively.

θ∗N = c
log(N)

λ
(5.7)

θ∗N = cN
1
λ (5.8)

5.2.3 Connectivity of Thresholded Random Geometric Graphs

The theory developed for Random Geometric Graphs and Random Threshold Graphs
introduced in the above sections is extended to characterize the connectivity bounds
for Thresholded Random Geometric Graphs. It is trivial to show that the lower
bound of R = Rc, for connectivity in Random Geometric Graphs described in Equa-
tion 5.4 will be equivalent to Thresholded Random Geometric Graphs, as setting the
threshold parameters, θ, to 0 exactly recovers the Random Geometric Graph model,
and any value of θ > 0 will reduce network connectivity. Networks with R values
above the critical value of Random Geometric Graphs have more interesting connec-
tivity characteristics, and are the focus of this section.

Above Rc, the condition for connectivity becomes a combination of influences of
the model parameters R and θ. The same condition for connectivity of Random
Threshold Graphs, where the summation of the minimally and maximally weighted
vertex exceed θ, will apply for Thresholded Random Geometric Graphs, but this
condition needs to be applied locally for every circle of Area = πR2 surrounding
each vertex. The degree distribution for any local network within πR2 of any node
can be obtained by substituting the local node count, Nρ, where ρ is the local node
density, for N in Equation 5.6 as shown in Equation 5.9.

p(klocal) =
f [θ − F−1(1− k

Nρ)]

Nρf [F−1(1− k
Nρ)]

(5.9)
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With a uniform distribution of nodes embedded onto the unit square, we can es-
timate a constant density, ρ = πR2

12
, will exist in each circle and Equation 5.10 is

obtained, which for uniformly distributed nodes and constant R is equivalent to
the degree distribution of the entire network. The estimate for ρ using the assump-
tion of uniform distribution everywhere will not hold for nodes along the edges of
the unit square, as the density of nodes beyond the embedding edges will be 0, re-
ducing the average density of nodes with connection areas reaching beyond these
edges. Knowing this limitation, we propose 5.10 as an estimate for the true degree
distribution.

p(klocal) = p(k) ≈
f [θ − F−1(1− k

NπR2 )]

NπR2f [F−1(1− k
NπR2 )]

(5.10)

Here we explore the connectivity of Thresholded Random Geometric Graphs numer-
ically, with empirical simulation results characterizing the connectivity properties of
the model.

Similar to the critical value Rc for Random Geometric Graphs, the critical value θc
for Thresholded Random Geometric Graphs, where a sharp transition in network
connectivity exists, is a function of N as depicted in Figure 5.4.

FIGURE 5.4: Connectivity Phase Transition of Thresholded Random
Geometric Graphs at Various Networks of Size N and R = 0.05. Left
- Exponential weight distribution with λ = 1, Right - Pareto weight

distribution with λ = 2

Unlike the critical value Rc for Random Geometric Graphs, the critical value θc for
Thresholded Random Geometric Graphs is unbounded and depends not only on N ,
but also the weight distribution f(w) andR. The unbounded nature of θc makes gen-
eralizing a critical value range difficult, and the theory for scaling laws of Threshold
Graphs developed in (Makowski and Yagan, 2013) is utilized. Using the constant
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density, ρ = πR2, of the uniformly distributed nodes on the unit square, we sub-
stitute N in Equations 5.7 and 5.8 with NπR2 in a similar fashion as the Degree
Distribution of Equation 5.10, resulting in Equations 5.11 and 5.12. Again, this will
produce a limited estimate of the true scaling using the assumption of uniformly dis-
tributed density of nodes everywhere, which will not exist for nodes near the edges
of the unit square.

θ∗N ≈ c
log(NπR2)

λ
(5.11)

θ∗N ≈ c(NπR2)
1
λ (5.12)

Figure 5.5 depicts the scaled connectivity thresholds of Figure 5.4 using the scaling
laws of Equations 5.11 and 5.12. The overlapping lines indicate the substituted scal-
ing laws for Threshold Graphs directly apply for Thresholded Random Geometric
Graphs at constant values of R.

FIGURE 5.5: Scaled Connectivity Phase Transition of Thresholded
Random Geometric Graphs at Various Networks of Size N and R
= 0.05 using the substituted scaling laws of (Makowski and Yagan,
2013) Left - Exponential weight distribution with λ = 1, Right - Pareto

weight distribution with λ = 2

The seemingly strong scaling law for the exponential case, with the transition re-
gions bounded closely to 1, and the weak scaling law of the power-law distribution,
with the transition continuing past 2.5 depicted in Figure 5.5 agree with the proven
properties of Threshold Graphs in (Makowski and Yagan, 2013).

In order to fully characterize the conditions for connectivity of the model and to con-
firm the estimates of Equations 5.11 and 5.12, the effect of varying R for a network
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of size N is also studied. Figure 5.6 depicts the connectivity for both weight distri-
butions for a network of size N = 2000 at R values of 0.05,0.1,0.15,0.2 and 0.25 and
shows a clear relationship between network connectivity and R, which for the expo-
nential distribution, is very similar to the relationship between connectivity and N ,
but strikingly different for the Pareto distribution, an expected result of Equations
5.11 and 5.12 due to the non-linear relationship between the model parameters N
and R and the weight distribution parameter λ for the Pareto distribution critical
scaling.

FIGURE 5.6: Scaled Connectivity Phase Transition of Thresholded
Random Geometric Graphs with a networks of Size N = 2000 and
various R. Left - Exponential weight distribution with λ = 1, Right -

Pareto weight distribution with λ = 2

To confirm the substituted critical scaling estimates of Equations 5.11 and 5.12, we
apply the scaling to Figure 5.6 in a similar fashion as Figure 5.5. Figure 5.7 shows the
critical scaling for the connectivity of Thresholded Random Geometric Graphs for a
network of N = 2000 parametrized with various values of R.

The consistent strong zero-one connectivity transition and overlap for the exponen-
tial distribution indicates the scaling law of Equation 5.11 fully generalizes the con-
ditions for connectivity in Thresholded Random Geometric graphs with exponential
weight distributions, and a constant transition threshold value for c exists for all pa-
rameterizations. The characteristics of the Pareto distribution of Figure 5.7 depict
consistent scaling, but indicates a transition of a continue weakening of the zero-one
scaling law as the maximum distance parameter, R is increased, extending fully into
the weak zero-one scaling law of Threshold Graphs. This is a very interesting prop-
erty of Thresholded Random Geometric Graphs, providing the ability to change the
rate of connectivity transition as a function of R, a characteristic that could prove
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FIGURE 5.7: Scaled Connectivity Phase Transition of Thresholded
Random Geometric Graphs with a networks of Size N = 2000 and
various R using the substituted scaling laws of (Makowski and Ya-
gan, 2013) Left - Exponential weight distribution with λ = 1, Right -

Pareto weight distribution with λ = 2

useful in real applications. The formal proofs of these properties and the exact val-
ues of c for each distribution are left for future work, but the unique characteristics
shown here highlight the potential for future studies and applications of the pro-
posed model.

5.2.4 Non-Uniform Spatial Embedding Distributions

The underlying assumption facilitating the estimation for the degree distribution
and critical scaling laws of Thresholded Random Geometric Graphs in the previous
section is the uniformity of distribution onto th unit square of nodes, leading to a
constant density, ρ, everywhere. This assumption may be overly restrictive, with
many real-world systems displaying non-uniform spatial distribution such as the
bias of global cities to lie near non-uniformly distributed coastlines or riverbeds. In
this section, we investigate numerically the impacts of non-uniform spatial distribu-
tions on the connectivity characteristics of Thresholded Random Geometric Graphs
and confirm that the estimates of Equations 5.7 and 5.8 fall apart under these condi-
tions.

Here we explore the impacts on network connectivity using a Mixture of Gaussians
spatial distribution with means, µ = 0.2 and 0.8 and a common standard deviation, σ
= 0.1 for both the x and y coordinate of nodes embedded onto the unit square which
is exemplified in Figure 5.8.



Chapter 5. Thresholded Random Geometric Graphs 29

FIGURE 5.8: Example embedding of N = 5000 Mixture of Gaussian
with µ = 0.2 and 0.8 and σ = 0.1 for both the x and y coordinates

distributed nodes on the unit square

Figure 5.9 depicts the connectivity for both weight distributions for a network of
size N = 1000 at R values of 0.05,0.1,0.15,0.2 and 0.25 for the non-uniform double
Gaussian distribution shown in 5.8.

FIGURE 5.9: Connectivity Phase Transition with networks of Size N
= 1000 and various R with non-uniform spatial distribution. Left -
Exponential weight distribution with λ = 1, Right - Pareto weight dis-

tribution with λ = 2

Although the clear relationship between connectivity and R persists for our non-
uniform spatial distribution similar to the uniform case, there are obvious highly
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nonlinear dynamics occurring, especially at the lower values of R. Applying the
scaling estimations of Equations 5.7 and 5.12, we see in Figure 5.10 that these esti-
mations clearly do not hold for the case of non-uniform spatial distributions, as was
expected from the underlying uniformity assumptions of the estimates.

FIGURE 5.10: Scaled Connectivity Phase Transition with networks
of Size N = 1000 and various R with non-uniform spatial distribu-
tion. Left - Exponential weight distribution with λ = 1, Right - Pareto

weight distribution with λ = 2

The limitations in our analysis for failing to capture the dynamics of non-uniform
spatial distributions, which are likely to exist in most real-world applications, sug-
gests the need for future work in the theory and mathematics to fully characterizing
the general conditions for connectivity in the newly present Thresholded Random
Geometric Graphs. These diverse dynamics under simple parameterizations also
suggest the extensive expressiveness capabilities of this new model, and efforts in
extending their underlying theory are likely to generate substantial contributions in
the field of Spatial Networks.
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Chapter 6

A Motivating Example - Telsa
Supercharger Network

6.1 Motivating Example Introduction

The motivation for the study of Spatial Networks in this paper is grounded in the
real-world application of Spatial Network models to the Tesla Supercharger electric
vehicle charging infrastructure network.

Tesla is an Electric Vehicle (EV), storage and panel manufacturer that recently sur-
passed GM to become the most valuable vehicle manufacturer in the United States
(Gaurdian). One of Tesla’s key differentiators is its Supercharger network of fast elec-
tric vehicle charging stations, allowing users to travel large distances with electric
vehicles using this infrastructure network.

FIGURE 6.1: Tesla’s Supercharger Network - 2017 (Tesla)
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The Supercharger network was selected as our motivating example for 3 key rea-
sons:

• Admissible - The infrastructure system and spatial nature of the Tesla Super-
charger network lends itself directly to its study using Spatial Networks.

• Valuable - The large amount of current and future investment into these types
of systems makes it a pragmatic and valuable system to study.

• Practical - The availability of data and the existence of multiple Supercharger
networks across different continents to compare and discover fundamental
patterns from makes it a feasible system to study.

6.1.1 Supercharger Network Dataset

The Supercharger data used in this paper is obtained from (supercharger.info), filtered
for the Canadian and American Supercharger locations, totaling 386 Opened Super-
chargers as of April 2017. Distances between Supercharger and city locations are
obtained via the Google Directions API. The collected data has been structure into
a Networkx Graph (Hagberg, Schult, and Swart, 2008) which is made up of nested
dictionaries keyed on the geohash of each Superchargers GPS coordinates. See Ap-
pendix A for an example node’s data structure. See Appendix B for an overview of
the geohashing algorithm used extensively in the source code of this analysis.

6.1.2 Network Model Definition

The Supercharger Network is modeled with the nodes being the cities of the net-
work region, embedded onto the unit square by normalizing the GPS coordinates of
each city and weighted by the population of the city, as a percent of the datasets total
population. Connections between nodes are made for cities that have Supercharg-
ers and are within the maximum base range of a Tesla model 3 (215miles - 346km)
(Tesla) as determined by the driving distance computed by Google directions API
between Supercharger GPS locations. Figure 6.2 depicts the representation of Fig-
ure 6.1 according to this network model definition, excluding Mexico and "Opening
Soon" Superchargers.
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FIGURE 6.2: Tesla Supercharger Network Model

Using the Albers Equal-Area Conic Projection (Snyder, 1987) with parameters enu-
merated in Table 6.1, the Supercharger Network can be projected onto the unit square
as depicted in Figure 6.3. The same projection is applied to the top 5,000 cities by
population for the United States and Canada depicted in Figure 6.4, providing the
network expansion space available to simulate the growth of the Supercharger net-
work on.

TABLE 6.1: Parameterization for Supercharger Network Albers Pro-
jection

Parameter Value Definition

lat1 40.0 First Standard Parallel
lat2 60.0 Second Standard Parallel
lon0 -97.0 Central Point - Longitude
lat0 47.0 Central Point - Latitude
Width 6000000 Width of the Projection
Height 4500000 Height of the Projection
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FIGURE 6.3: Telsa Supercharger Network Albers Projection onto the
Unit Square

FIGURE 6.4: Top 5,000 Canadian and American Cities by population
Albers Projection onto the Unit Square

With this definition of the Supercharger Network model and network expansion
space, the network can be analyzed and modeled using the Spatial Network models
of Section 3.2.

6.2 Supercharger Network Parameterization

In this section we review some of the properties of the current Tesla Supercharger
network and discover the Spatial Network parameters, λ, R, P (dij) and θ, specific
to the Tesla Supercharger network.
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6.2.1 Supercharger Network - λ

The first parameter we fit to the real data of the Tesla Supercharger network is λ,
the powerlaw exponent of Equation 5.3 that characterizes the weight distribution of
nodes embedded on the unit square, which are city populations in our case. Using
the Powerlaw python package by (Alstott, Bullmore, and Plenz, 2014), we approx-
imate the powerlaw fit with the packages Maximum Likelihood Estimate (MLE) of
the top 5,000 Canadian and American city populations data. The obtained MLE for
λ is 2.3 with xmin = 48,433 which agrees almost exactly with the estimates for similar
city population data performed in (Newman, 2005), with λ = 2.3 with xmin = 40,000.
Figure 6.5 shows the real distribution of the city population data versus the fitted
distribution.

FIGURE 6.5: Top 5,000 Canadian and American City Populations
Powerlaw fit λ = 2.3

6.2.2 Supercharger Network - R

The next parameter needed for the Spatial Network models is R, the maximum con-
nection distance. The maximum connection distance for the Supercharger network
is provided in the model definition of Section 6.1.2, namely the maximum base range
of a Tesla model 3 (215miles - 346km), when scaled to the model’s unit square pro-
jection is R = 0.0461.
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6.2.3 Supercharger Network - P (dij)

The distribution for the probability of connection as a function of distance, P (dij)

can be directly estimated from the actual distribution of the connection distances
in the current Supercharger network. Figure 6.6 plots the Supercharger network’s
connection counts at each distance with a fitted Gaussian Kernel Density Estimate
(KDE) of the distribution.

FIGURE 6.6: Supercharger Network Connection Probability Distribu-
tion, P (dij) with Gaussian KDE

An interesting observation of Figure 6.6 is the increasing probability of connection
as a function of distance, which is in stark contradiction to the base assumption of
monotonically decreasing probabilities as a function of distance assumed in many
Spatial Network models (Barthélemy, 2011). In the context of the Supercharger net-
work, an increasing connection probability as a function of distance to some max-
imum distance makes intuitive sense, as an underly driving force of the network
must be at least partially to expand broadly, which requires a bias towards longer
distanced connections. Other networks are likely to display a similar property and
the observation of Figure 6.6 supports the claim of this paper that Thresholded Ran-
dom Geometric Graphs may be better suited at modeling networks of this type.
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6.2.4 Supercharger Network - θ

The final parameter needed for Spatial Network models of the Supercharger net-
work is the minimum connection threshold, θ. Again, θ can be estimated directly
from the data of the current Supercharger network by inspecting the distribution of
weighted connections of the network and selecting the minimum. The distribution
of connection weights is depicted in Figure 6.7, and the lower range is highlighted in
Figure 6.8, with a minimum connection weight taken from the data being θ = 0.0044.

FIGURE 6.7: Supercharger Network Connection Weight Distribution

FIGURE 6.8: Supercharger Network Connection Weight Distribution
Lower Bound
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6.2.5 Supercharger Network - Parameter Summary

Table 6.2 summarizes the Spatial Network parameter estimates for the Tesla Super-
charger Network. These parameters can be used to model the Supercharger network
with various Spatial Network models and compared which model best represents
the underlying structure of our motivating example.

TABLE 6.2: Tesla Supercharger Network Spatial Network Parameter
Estimates

Parameter Value

λ 2.3
R 0.0461
P (dij) KDE
θ 0.0044

6.3 Supercharger Network Spatial Network Modeling

With the Spatial Network parameter estimates obtained in Section 6.2, we can pa-
rameterize the Spatial Network models of Section 3.2. Here we focus our analy-
sis to the recent advanced Spatial Network models, namely Soft Random Geomet-
ric Graphs, Geometric Threshold Graphs and the Thresholded Random Geometric
Graphs model presented in this paper, and benchmark their performance against
randomly selected nodes and the RGG model. To validate which model best cap-
tures the underlying structure of the Supercharger network, 10,000 examples of each
model are generated using the model definition and parameterization of the above
sections, and each models ability to predict the 32 newest Superchargers not in-
cluded in the models’ parameterization estimates are compared.

6.3.1 Network Evaluation Metrics

In order to compare each Spatial Network model’s ability to discover the under-
lying structure of the Supercharger network and correctly generalize to future Su-
percharger locations, we define a few network evaluation metrics that capture the
distinct properties of the Tesla Supercharger Network. The 3 evaluation metrics are
population Coverage, geographic Breadth and network Efficiency,defined here.

• Coverage - The percent of population represented in the main connected giant
component of the network
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• Proximity - The Earth Movers Distance (EMD) (Pele and Werman, 2009) of the
simulated network to the real network

• Efficiency - The geographic diameter of the network divided by the average
shortest path length

6.3.2 Spatial Network Model Validation

Each Spatial Network model is initialized with the seed network of 386 Opened
Superchargers and new Supercharger locations are added according to the param-
eterization of each model until the network has 418 Superchargers, simulating the
addition of the 32 held-out Superchargers. Each model is run for 10,000 simulations,
and the most frequently occurring simulated network is selected, representing the
models final predicted Supercharger network. Each evaluation metric of Section
6.3.1 is computed and the similarity to the real network values are summarized in
Table 6.3.

TABLE 6.3: Spatial Network Model Evaluation Metrics Similarities to
Real Network Metric Values

Metric Real Network TRGG GTG SRGG RGG Random

Coverage 0.697 97.3 86.7 63.7 52.3 73.4
Proximity 1.0 90.7 91.5 90.4 89.7 88.0
Efficiency 0.348 93.9 95.0 88.5 90.6 20.4
Average N/A 93.4 91.1 80.9 77.5 60.6

The results in Table 6.3 indicate that the TRGG model is able to best capture the the
structure of the real Supercharger network across the 3 measured metrics, with an
average similarity to the real Network of 93.4%. The GTG model’s performance is
very similar to the TRGG model, and slightly outperforms the TRGG model in both
the Proximity and Efficiency metrics. This comparable performance makes intuitive
sense, as both models attempt to capture the same underlying structure: the influ-
ences of both spatial constraints and weight thresholds on the network. It is interest-
ing to note that the parameterization of the GTG model is much more complex than
that of the TRGG model, as a Gaussian KDE of the connection distance distribution
was directly computed and used, where the TRGG model only utilized 2 real valued
numbers as parameters. This also explains the GTG models ability to closely capture
the spatial distribution of the 32 new Supercharger locations and its high Proximity
metric, as it directly utilizes the closely matching spatial distance distribution of the
initial 386 Supercharger locations. This extra complexity in the GTG model com-
pared to the TRGG model makes in more likely to overfit to the data, and as the
Supercharger network continues to expand the generalization performance of the
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GTG model may degrade compared to the simpler TRGG model. It would be inter-
esting to revisit this analysis in the future using the same parameterizations learned
here and compare performances on a larger set of future Supercharger locations.
The other Spatial Network models that do not incorporate network weights have
much poorer performance, especially in the Coverage metric which measures the to-
tal network weight, and indicate the importance of including networking weighting
parameters for accurately modeling the Supercharger network. These results high-
light the ability of the newly proposed TRGG model to maintain the simplicity of the
RGG model while accurately capturing the underlying structure of Spatial Networks
like the Tesla Supercharger network, and we claim it will have similar comparable
performance when applied to the classes of networks described in Section 5.1.
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Chapter 7

Conclusions and Future Work

7.1 Conclusions

Motivated by the concrete problem of predicting where future Superchargers would
or should be constructed, the results in this paper have taken us through the long
and sometimes winding path of exploring the field of Spatial Networks, the survey
of its state-of-the-art models and their applications, the discovery of a gap in cur-
rent model representation power, the need to develop a new model to fill that gap
including results for the conditions of connectivity, and the direct and successful
application of this new model to achieve the original motivating goal.

Complex Networks are wonderful tools for representing all sorts of physical sys-
tems, but the need to consider spatial constraints in the development of these net-
works is proving to be crucially important, and the domain of Spatial Networks
charged with this consideration is continuing to see increasing study. Many simple
models have been proposed with recent proposals increasing relative model com-
plexity and these most common Spatial Network models share common parameters,
and a novel classification using this shared parameterization has been presented in
this paper to help new researchers quickly intuit the relationships between some of
these common Spatial Network models. Another hope for this new classification is
to facilitate the identification of gaps in current model parametrization to inform the
creation of new and useful models similar to the approach taken in this paper.

The true motivation behind the work in this paper was the discovery and under-
standing of a powerful tool that has proven to be useful in a wide range of engineer-
ing problems, and Spatial Networks continues to prove itself as one of those tools.
Finding successes in fields as diverse as Transportation and Infrastructure Networks,
Neuroscience, robotics and social network analysis, Spatial Networks are deserving
of the amount of research and theory being developed for them, as they continue to
help solve real-world challenges.

Having domain knowledge about the structure of the Tesla Supercharger network
that proved to be useful in the development of a model capturing its structure, the
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work of this paper discovered a gap in the existing Spatial Network models in ade-
quately incorporating that domain knowledge. This inspired the proposal of the new
Spatial Network model, Threshold Random Geometric Graphs, which is the core
work of this paper. Here we saw the diverse dynamics presented by this model, the
conditions for connectivity under some conditions and the identification for future
work applied to this new model likely to find further results in real-world applica-
tions.

The successful application of this new model to a real-world use-case and dataset
came with the usual challenges of Data Science, with much of the difficult work hid-
den behind the scenes in data collection, munging, validation and structuring. With
the final performance of the newly presented TRGG model being shown to outper-
form a selection of other Spatial Network models for our use-case in the Tesla Su-
percharger network, we hope that walking through the method of parameterization
of these models discussed in this paper might be used as a template for the analy-
sis of other real-world systems and to ultimately provide a classification for which
Spatial Network models are best suited to particular classes of real-world systems.
We also use the results of our new model on the Supercharger network to claim that
it may be better than current models in modeling the types of systems discussed in
the model introduction in Section 5.1.

As the young field of Complex Networks and the sub-domain of Spatial Networks
enter maturity, new quantifications for their proposed models are needed. In this pa-
per, we propose a new classification of Spatial Networks to ease the introduction of
the field to new researchers and capture the relationships between common models.
A new model, Thresholded Random Geometric Graphs is proposed to better cap-
ture the constraints of some real-world systems and applied to a real network with
the aim of being a template for future applied studies using these powerful Spatial
Network models. The rich representation of Spatial Networks to real-world systems
is proving to be an exciting field of study and the continued research into their struc-
ture and applications is posed to help accelerate the discovery of breakthroughs in
many vastly diverse domains.

7.2 Future Work

The expressiveness of Spatial Network models and their ability to intuitively capture
physical properties of real systems has accelerated the number of theoretical and
applied papers studying their use. Here we mention some of the potentially fruitful
future work using Thresholded Random Geometric Graphs, and Spatial Networks
more generally, in both theoretical and applied domains.
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7.2.1 Future Work - Theoretical

As is typical when a new model is proposed in any scientific domain, the total combi-
nation of previous analytical studies to past models becomes immediately applicable
to the new model. In the field of Complex Networks, these typical studies include
investigations and proofs for the conditions of connectivity, degree distributions,
clustering, diameter and many other well studied Complex Network properties, all
of which can be investigated for Threshold Random Geometric Graphs. Beyond the
typical Complex Network properties, the unique property of changing phase transi-
tion rates as a function of a parameter of the model deserves special attention, and
quantifying the exact mathematical constructs needed to describe this phenomena
and its use-cases in tuning real-world networks to these types of structures could
lead to interesting results. The theory supporting even the oldest and simplest Spa-
tial Network models continues to expand, even while new and more complex mod-
els are being proposed and the theoretical future work for these models showing no
sign of slowing down.

7.2.2 Future Work - Applied

The model proposed in this paper was inspired by a specific application, modeling
the Tesla Supercharger Network where the fundamental constraints of the network
were not adequately met by existing models. In Section ??, we propose other real-
world systems that we claim are well modeled by Thresholded Random Geometric
Graphs, but have only investigated a single instance in this paper. Many similar
studies should be conducted to confirm the new model’s ability to adequately model
the suggested systems. For Spatial Networks more generally and the plethora of ex-
isting models, a quantification for which model is best suited for which types of
systems is needed. In this paper, we have relied on intuition for describing which
types of real-world systems are best captured by our proposed model, but an expan-
sive study comparing common characteristics that lend themselves towards being
modeled by a particular Spatial Network model would be hugely beneficial to the
field. Finally, of particular interest is the application of Spatial Network models to
the study of the human brain and the analogous structures of deep learning neural
networks, which is only now starting to be adopted, and further exploration of these
models in those domains are likely to discover interesting and fruitful results.
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Appendix A

Networkx Supercharger Data
Structure

FIGURE A.1: Example Networkx Data Supercharger Structure
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Appendix B

Geohashing

The concept of geohashing was utilized extensively in this work to facilitate the ef-
ficient geographical search over Supercharger locations. Geohashing is a technique
of encoding geographical locations (ie. GPS coordiantes) as strings that represent
rectangle bounding boxes of customizable precision. The longer the encoded string
is, the more precise the geographic bounding box (Lee et al., 2014). This specialized
encoding and the attribute of customizable precision is very useful in identifying if
2 locations are "close" to each other. We use this concept to efficiently search geo-
graphically for items that fall within a certain distance from one another and reduce
the need to use the Google Directions API for every pair of Supercharger locations
in our networks.

Illustrated in Figure B.1 are example expanded bounding boxes for the Denver Su-
percharger at geohash precisions 2,3 and 4

FIGURE B.1: Example Geohash Bounding Boxes for Denver Super-
charger at precisions 2,3 and 4

One draw back to this technique is the large differences in precision between preci-
sions 2, 3 and 4. However, using iterative expansions of any desired precision, we
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can create more refined bounding boxes of any size. This concept is illustrated in
Figure B.2.

FIGURE B.2: Example Geohash Bounding Boxes with arbitrary preci-
sion

Using the above techniques, we can find all Supercharger that are "close" (for any
arbitrary definition of close), to any other Supercharger efficiently as depicted in
Figure B.3, drastically reducing the computational (and financial) costs of querying
all pairs of Supercharger locations through the Google Directions API.

FIGURE B.3: Example Geohash Nearest Neighbors Search

The bounding boxes for all nodes in the current network can then be combined to
establish all reachable locations of the current network, providing the expansion
search space of the Supercharger network which is show in Figure B.4.
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FIGURE B.4: Supercharger Network Geohashed Expansion Search
Space
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