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1.0 Description of the Domain of Application

This report outlines the development of an Intelligent Decision Support System (IDSS) to identify from
images if the driver of a vehicle is performing an action that may be considered unsafe. An overview of
the problem is presented, with details about the data structure and architecture, along with the
exploratory, modelling and validation analysis required in building the IDSS. The final results are
discussed and future work with potential improvements are recommended to further develop the
model.

1.1 Kaggle

Kaggle is an online platform that connects companies with difficult Data Science problems with Data
Science practitioners, in the form of competitions. Companies provide details, data and a scoring
methodology that competitors use to build the best IDSS models to solve the specific data driven
problem.

This project attempts to build an IDSS that is competitive with other models in the State Farm Distracted
Driver Detection Kaggle competition.

1.2 State Farm Distracted Driver Detection Competition

This competition aims to accurately classify the behavior of vehicle drivers to help determine if their
action might be considered unsafe. With the advent of in-car radios, fast-food and cellphones, distracted
driving has become a common cause of car accidents and fatalities. The goal of this competition is to
build a system that can highlight these distracted driving activities.

1.3 IDSS Application

An application of the proposed IDSS could be used by insurance companies to better assess accurate
driving insurance premiums for safe and potentially unsafe drivers. Users could opt-in to a program
where a camera is installed in the vehicle for a month that tracks the driving habits of the user and
automatically detects and scores their driving behaviour. This technology could create safer roads by
encouraging drivers to develop safe driving habits, decrease insurance premiums people with safe
driving skills, and increase insurance companies confidence in the fees they should charge their clients.

1.4 Dataset

The State Farm Distracted Driver Detection Kaggle competition consists of 22,424 training images that
have been sorted into 10 classes, and 79,726 unclassified images for testing. An example image is
presented in Figure 1.

Figure 1: Example Training Image
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1.5 Decisions

The State Farm Kaggle competition is a classical image classification Computer Vision challenge, where
the IDSS, when given an image, is required to correctly identify the class to which it belongs. The main
decision required by the IDSS is to determine the probability that an image belongs to each of the above
classes.

1.6 Tools Used

R - Ris a programming language heavily utilized in statistical and data analysis applications. This tool was
used in the Exploratory Data Analysis section of this report, to better visualize and understand the
problem’s dataset.

MatLab - Matlab is a numerical programming language that integrates, as part of its toolboxes, some
already implemented and efficient algorithms. This is very useful, as most of the applicable supervised
classification methods are available, optimized and with great documentation. Another reason to use
this tool is that other subjects that include Machine Learning content encourage the use of it in the
Master in Artificial Intelligence. The extensive practise with this software made us favour this option over
others. A set of toolboxes have been employed for the development of this project:

e Statistics and Machine Learning Toolbox: It is an optional toolbox that comes with standard
editions of MatLab and contains efficient implementations of the most relevant classification
algorithm with very intuitive instructions to use. It also provides feature selection techniques,
like PCA.

® VLFeat[1]: Is an open source library written in C that interfaces with MatLab for easy use. It
implements common Computer Vision algorithms for classification, image understanding,
feature extraction and classification.

Keras/Theano - Keras is a Python library built on top of the Deep Learning Theano package, that allows
for a high level construction of deep neural networks by abstracting the creation of individual layers
(Input, Filter, Convolutional, Output) as pythonic objects with the ability to stack them together.



2.0 Functional Architecture of the IDSS Prototype
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3.0 Data Pre-Processing

As MatLab is the principal tool employed for this problem, we faced some problems importing the
dataset. The set of images is large (>24,000 images)and most of the already implemented functions in
this tool require the data to be in double format. The images have a dimensionality of 640x480 RGB
pixels, that makes the whole dataset fill a space of 20 thousand million doubles.

3.1 Grayscaling

Obviously, that much data does not fit in any of the available systems of the members of the team. The
first approach was reducing the quantity of the data by converting the images to grayscale, which
reduces the spatial needs to a third of the original size. This decision makes sense in the context of the
problem as the decisions are performed observing the position of the driver and is not related to any
color information.



However, that was not enough, as the dataset still was too large to fit in memory. The team then
pondered about various ways to still use the dataset. Dividing it by clusters or classes seem an
understandable decision, however most of the methods existing in MatLab do not give support to a
divided dataset to do their main functionalities.

We thought that reducing the number of samples was not a good option, as most of the classifiers
planned to be tested are very data dependant. Furthermore, without information of the relevant
samples, we could be reducing our resulting accuracies by a dramatic margin if we had ignored samples
using a random policy.

3.2 Image size reduction

The selected approach for reducing the spatial consumption of the dataset was dimensionality
reduction. As the given inputs are images, reducing them does not necessarily delete important features
and can even help the classification method to ignore most of the noise. This is a common practise in the
Computer Vision branch of Al and, as the results will show, is a very effective approach.

In order to further reduce the dataset dimensionality and prevent noise (which in image data is usually
high) some of our methods employed PCA technique[2] to create a set of linearly uncorrelated variables.
This usually helps the algorithms computational time and space requirements, as the new set of
variables is always smaller, and can improve accuracies in very noisy environments.

4.0 Exploratory Data Analysis

The high dimensionality of image processing and Computer Vision problems make the application of
traditional Exploratory Data Analysis (EDA) and Feature Engineer (FE) difficult, but there are still
important attributes of the dataset to explore.

4.1 Distribution of Class Training Image Counts
Table 1 outlines the distribution of counts of available training images, to ensure that an even
distribution of each class exists within the training set.

Table 1- Distribution of Class Training Image Counts

Class ID Class Training Image Count
co normal driving 2489
C1 texting - right 2267
C2 talking on the phone - right 2317
C3 texting - left 2346
ca talking on the phone - left 2326
C5 operating the radio 2312
Ccé6 drinking 2325
c7 reaching behind 2002
Cc8 hair and makeup 1911
Cco talking to passenger 2129

The classes seem to be fairly consistently represented, with class 0 (Safe Driving) being the most
represented and class 8 (Hair and makeup) being the least represented. This makes safe driving 30%



more represented than Hair and Makeup, but most classes have close to 2000 sample images. The
effects of these different training sample sizes should be considered when developing the IDSS model.

4.2 Distribution of Class Training Subject Counts
Each image in the training set has been labelled with the "subject"” or individual person observed in the
image. Figure 2 Visualizes below a stacked barchart for the class representation of each individual.
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Figure 2 - Distributions of Class Training Subject Counts

The distribution of individuals in each class are fairly similar, but there do exist obvious differences. Some
easily identifiable outliers include subject 16 in class O (safe driving) being over represented, or subject
26 being largely underrepresented in many categories, such as C5 (operating the radio) and C7 (reaching
behind). It is important to review these outliers in analyzing the performance of a model, as it may be
possible to develop models that overfit to the above distributions, but do not generalize to real world
distribution of these classes. For example, it could be possible to learn attributes about subject 26 and
use those attributes as indication that the probability of being in classes 5 or 7 are very low. But because
the purpose of our model is to generalize to the larger public, using these attributes specific to subject
26 may incorrectly categorize subjects with similar attributes, but do belong in classes 5 or 7.



4.3 Distribution of Class Training Subject Counts

A major issue with this dataset is that each for each driver, there are many consecutive images sliced out
of a video of the particular action. This means that if the dataset is split naively into training and test
sets, the test set will, in effect, be a fuzzy subset of the training set. This property of the data led to us
seeing implausibly good performance in our initial tests, e.g. k nearest neighbors on raw pixels having an
accuracy of >99%.

5.0 Data Driven Models

5.1 Linear and Quadratic Discriminant Analysis classifier

The linear discriminant analysis (LDA) is a method that is used to find in a given dataset a linear
combination of features that can characterize or separate between given classes between points in that
dataset. This linear combination can be used to reduce the number of featured in the data, but also can
be used to classify the data.

LDA assumes that, for each class, the data is generated following some normal distribution. LDA also
assumes that the covariance of each of the classes is the same. Thus LDA can be used to find a space that
appears to contain all of the class variability.

Quadratic linear analysis (QDA) is similar to LDA with the main difference being that it does not assume
that the covariance between classes is identical. Given this set of constraints likelihood ratio can be used
to create a separating surface between the classes. It can be shown that this surface is quadratic, hence
the name quadratic discriminant analysis.

Since both methods assume that the classes generate the data by a normal distribution in order to
create a classifier the fitting function estimates the parameters of a Gaussian distribution for each class.

For our IDSS, using simply these methods with the pca processed pixel data of the images did not give
good results.

While splitting the data randomly, for cross validation, the results were quite good, both QDA and LDA
performed with accuracy of 0.98 and a logloss of 0.41 LDA and 0.37 QDA. These are extremely good
results, but it was obvious that the methods were overfitting. The problem was that we were using the
same subject in training images as well as testing images. As soon as we changed the sampling to
partition the dataset by subject, the accuracies dropped significantly. LDA got 0.35 accuracy and 22.5
logloss and QDA 0.18 accuracy and 28.3 logloss. Which are terrible results. It is interesting to note that,
with the change of sampling QDA performed worse than LDA.

5.2 Binary Decision Trees

Binary decision tree is a well-known classification method that builds a tree from the training data that
has at every node the value of some feature and the leafs are possible classes. It splits data based on the
discriminative power of that feature (and that value). One of the best point about decision trees is that
they are quite fast to train and predict.

The biggest drawback of decision trees is the fact that they are prone to overfitting. This can be seen in
the results of our tests. We have used a simple binary decision tree, that is implemented in matlab, using
the default parameter values.



Using simple pca pre-processed pixel data, the method did not perform too well. Even with random
sampling the binary decision trees performed quite poorly, having an accuracy of 0.79 and a logloss of 7.
With sampling by subject the performance dropped to 0.17 accuracy and 28.1 logloss (which is slightly
better than QDA).

5.3 Naive Bayes Classifier

Naive Bayes classification training means estimating a probability distribution of data into classes. One of
the keypoints of this estimation is that the naive bayes assumes that the features are independent given
the class. While this is usually not true in practice, it the method still appears to work well, particularly
with datasets with many features. For testing the method computes the posterior probability of the
belonging to each class. Then the sample is classified according to the largest posterior probability.

The method can use different probability distributions. We have used the default Matlab distribution
which is the kernel distribution. It is good for features with continuous distribution, but is not strict, it
can be used even if the distribution of some feature is skewed or has peaks or modes.

Yet, the Naive Bayes classifier had a very bad result on our IDSS using simple pca pre-processd pixel data.
For the random sampling it got an accuracy of 0.53, which is the lowest accuracy we observed for this
test. The logloss was, accordingly, 15. On the sampling by subject test it got an accuracy of 0.09 and
logloss of 26.9. Which is extremely bad.

5.4 Nearest Neighbors and Probabilistic nearest neighbors
Nearest Neighbors treats each instance as a vector, and calculates the

Nearest Neighbor classification is one of the oldest and simplest classification methods. It is a type of
lazy learning, where the computational burden is left to the time of prediction. Nearest neighbor works
by computing the distance between the sample we wish to predict the class of and the training points.
The points with the smallest distance to the sample (neighbors) are retrieved and the class of the sample
is decided by aggregating the classes of the neighbors — usually choosing the majority class. There can be
different algorithms to break ties.

We have used the default parameters values for the algorithm implemented in Matlab —k is equal to 1,
the distance metric is the Euclidian distance and the tiebreaker is the class of the closest neighbor from
the tied classes.

Using pca pre-processed pixel data, which are not invariant to rotation, scale, and angle, it did not give
very good results for classification of images. For random sampling it gave very good results, 0.99
accuracy and 0.14 logloss. But it was obviously heavily overfitting, and the results for the sampling by
subject are 0.39 accuracy and 20 logloss. These are better results than the previous methods, yet are bad
enough not to be significant.

The idea for the probabilistic nearest neighbors came from the fact that the official score for the kaggle
competition is computed with the logloss metric. This metric is reliant on the fact that the predictions



are probabilities of what class the tested points are. The original knn is giving only a class not several
probabilities, and this is a great disadvantage in the logloss metric. So, the idea was to transform the knn
algorithm into a nearest neighbor algorithm that gives probabilities for every class. Intensive research on
this area has been done before including methods that are more or less complex. In [8] there is a
comparison of several such methods, and the conclusion is that probabilistic methods are not necessarily
better than simple knn, nor the other way around. Despite this, we decided to try our version of a simple
probabilistic knn.

The algorithm is very simple: 51 neighbors are retrieved and the probability associated with every class is
the percent of neighbors that are from that class in the 50 retrieved neighbors. Using this algorithm, the
predictions of the knn are probabilities and, as expected, the logloss was improved. But the result was
extremely surprising. For sampling by subject, the logloss was 8.23 but the accuracy was 0.07. The
accuracy is extremely low, which means that the pknn was not performing almost at all. But the logloss is
significantly better than for the previous methods. Still, logloss of 8.23 is insignificant.

Of course, the high number of neighbors might be the cause of the loss in accuracy, as usually, for knn
lower number of neighbors (5, 7, 13) give a better result, but testing with 25 and 7 neighbors did not
improve accuracy, on the contrary, the accuracy dropped to 0.06.

5.5 Support Vector Machine

Support Vector Machine is a binary classification method which is based on finding a hyperplane that
completely divides the data in two spaces. Once this hyperplane is found, the classification can be done
by deciding in which side of the hyperplane the new data point is. This algorithm has the problem that it
can not create a dividing hyperplane if the data is not separable. To be able to use this method with a not
separable dataset, a margin is added. This margin allows samples to be in the side of the hyperplane that
does not belong to its class. Adding this margin, the algorithm will try to find the best tradeoff between
finding the hyperplane that better classifies the data and the margin that covers most of the wrongly
classified samples.

5.6 Error Correcting Output Codes

A major limitation of many classification algorithms is that they are binary separators, e.g. SVM. Since
this classification task is multi-class, something extra is needed if we want to use such algorithms. One
such method is Error Correcting Output Codes, which is used to interpret the output of an ensemble of
binary classifiers. [7]

ECOCs work by training n binary classifiers, then
each class is assigned a codeword which is a bit
array of length n, where the ith element
corresponds to the binary class decided by the ith
classifier. When using an ECOC to decide an unseen
instance, the instance is classified {0,1} by each n - (a) ) (b} e - i
classifiers, and then the output code is compared to ()
the codeword for each class. Given a distance metric

with the midpoint defined for all points, it is easy to see that ECOCs can correct for at least (d-1)/2
individual classification errors where d is the distance between the two nearest codewords.




5.7 Convolutional Neural Network

The Neural Network developed for this IDSS is a Sequential model, where the results of each previous
layer are computed and fed sequentially into the next layer. A baseline Sequential Neural Network for
the State Farm competition can be found here. For most image classification Neural Nets, there is a
minimum of 3 layers required - An input layer, a hidden Convolutional Network layer and a final output
layer with dimensionality equal to the number of classes in the classification problem (in this case 10).

The following figure depicts the minimum architecture for a Neural Network IDSS for the State Farm
classification competition.
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Using this baseline Neural Network with 3 layers and 2-K-Fold cross-validation, the logloss for this model
is 1.19. To improve the score, more layers can be added to the network. Although neural networks can
be difficult to describe, there are some options we can conceptualize and tune. The following table

summarizes the options used for the final Neural Network IDSS, used to tweak the keras script from the
linked baseline github codebase.
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Layer Description Layer Type Layer Options

Input Layer - Initial data loading | Convolution2D

Kernal Size =2
and parsing layer

Filters = 32
Input shape = 96x128
Activation = RelLu

1st Hidden Layer - Macro level Convolution2D

Kernal Size = 2
feature learning

Filters = 32
Activation = RelLu



https://github.com/ZFTurbo/KAGGLE_DISTRACTED_DRIVER

2nd Hidden Layer - Reduce MaxPooling2D pool_size =2
dimensionality once macro
features are learned

3rd Hidden Layer - Dropout Dropout Dropuot_rate = 25%
layer to prevent overfitting

4th Hidden Layer - Micro level Convolution2D Kernal Size = 2
feature learning Filters = 32
Activation = Relu

5th Hidden Layer - Reduce MaxPooling2D pool_size =2
dimensionality once micro
features are learned

6th Hidden Layer - Dropout Dropout Dropout_rate = 50%
layer to prevent overfitting

Output Layer - Reshape Dense Classes = 10
dimensions to final classes Activation = softmax
Training Options NN Training Batchsize = 64
Epochs =3
K-Folds = 10

The final logloss score for this model using 10-fold K-fold cross-validation is 0.8, a very impressive score,
but likely suffers from some overfitting.

5.8 Classifying by Visual Words and Spatial Histograms

Classifying by means of Visual Words is a complex process. The image is first divided into dense keypoints
[3], which describe points of the image by means of analysing patches of the image with a fixed size and
frequency over the image. Those patches are analysed by means of SIFT descriptors [4] which describe
the patch computing visual invariant features, position, size, etc. The different descriptors for each patch
are stored in a database called ‘Vocabulary’. After this data is obtained, for each training class, the
descriptors from the ‘Vocabulary’ (called Visual Words) are located in the image. With the amount of
Visual Words of the image, an histogram is build. This histogram describes the image. A more advanced
technique involves a previous tiling of the image, effectively dividing it into different sections. After that,
an histogram of each section is obtained, which better describes the image but is more computationally
expensive. This procedure can be seen as a complex way to perform a very informative data
transformation of the input images.
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Figure 3 - Classification using Visual Words and Spatial Histograms. [5]

Once that process is over, the system has a description of each of the images based on spatial histograms
of visual words. This information can be used to classify samples. In the context of this problem, the
samples are classified, which means that the data of the histograms can be used as training samples of
any supervised classification algorithm. After the system is build, the test samples should be also
described using spatial histograms with the same vocabulary and the same tiling.

The selected algorithm for doing the classification procedure was Support Vector Machines. Most of the
examples found in the literature used this technique, for its training a testing speeds and also for its low
spatial consumption (very useful in massive datasets like this one). The biggest problem is that the
project uses a Multi-Class dataset. In order to use this technique, a One vs All version of the SVM model
was proposed and implemented.

5.9 Histogram of Oriented Gradients

Histogram of oriented gradients is a very popular feature
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features can then be used with any machine learning algorithm, although SVM is the standard.

6.0 Flowchart of the Data Driven Model
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7.0 Model Post-Processing and Validation

7.1 SVM Visual Words and Spatial Histograms

The tests over this algorithm were promising using the binary classifier (class 0 versus class 1) as we got
98% test score using data division by drivers. Although the SVM is a very fast method to train and test,
obtaining the vocabulary and the transformation of the images to spatial histograms is a remarkably long
process. Those results were obtained after some hours of computation.

After this promising result, we implemented a multiclass, one versus all version of the SVM classifier. The
training time increased a lot due to the among of images we had to process. Also, the data structures
created also consumed a high amount of space. We were planning to do a 5-fold cross validation to
obtain statistical significant results, however that would have taken 40+ hours of computation, a time
that we were not able to spend. The final results of this method applied only to one fold was a 77% if
accuracy over the test set.



We also tried to compute our results over the test set provided by Kaggle with a partial version of our
system to observe the generalisation capabilities and compare them with our other methods. Although
we had the ten support vector machines trained from previous tests, extracting the histograms of the
test data would have taken more than 40 hours, as the test set is also massive. This last part was
dropped by lack of computational time.

8.0 Final Results and Conclusions

Multi-class
LDAC Naive Bayes Decision Tree kNN SVM+ECOC
Raw Pixels 44.6 (35.1) 36.2(29.2)  33.9 (26.2) 45.3 (34.1)  43.0 (34.0)
Raw Pixels + PCA 48.3 (35.9) 11.1 (9.4) 23.3 (17.6) 46.2 (39.9)  40.9 (34.0)
Hog features 64.0 (54.0) 56.5 (45.6)  31.4 (26.8) 57.5 (51.0)  66.0 (54.3)
(

Hog features + PCA 63.8 (55.6)  0.12(0.09) 33.8(29.7)  63.7(54.3) 7L1(60.2)

Class 0 vs Rest

LDAC Naive Bayes Decision Tree KNI SVM+ECOC ~ SVM
Hog features 89.2 (85.9)  B89.0(82.1)  83.1(79.3)  91.6(89.1) ©90.1(36.%) 90.1(36.9)

Hog features + PCA 01.5(87.9) B89.8(88.0) 796 (7L7)  9L1(89.2) 00.8(87.5) 013 (86.4)

Fig. Max Accuracy (Avg Accuracy) over 10 fold cross-validation

Model CV Logloss Score
LDA 225

QDA 28.3

Decision Tree 28.1

Naive Bayes 26.9

k-Nearest Neighbors 8.23

HOG Features - SVM + ECOC - Multi-class 9.9885

HOG Features - kNN - Zero vs Rest 3.0886

8-Layer Convolutional Neural Network 0.8

The final validation scores show that the Convolutional Neural Network provides the best results of any
Data Driven Model. This result is not unexpected, as many of the cutting edge Computer Vision



applications are utilizing CNN’s with record breaking success. Although it was expected that CNNs would
outperform the other models, inducing various descriptive, generative and discriminative models
provided the team with deep understanding of the advantages and disadvantages of various models,
along with developing an intuitive understanding of the problem and dataset.

The CNN model was utilized as the team’s submission for the Kaggle competition, and obtained a logloss
score of 1.79, more the double the training set crossvalidation logloss. This indicates that the model
suffers a substantial amount of overfitting, utilizing details of the driving subjects in the training set that
do not exist in the test set. To improve this model, a review of the characteristics that are being
overfitted is required, and an iterative design approach to incrementally improve the final results to
eventually develop a system capable with higher predictive capabilities.

The final model was number 715 out of 975 entered teams, but was able to beat the base submission
benchmark score of 2.3. Although the model surpasses the benchmark, further work is required to build
a system of acceptable accuracy to be used in the proposed application of quantifying driver behaviour
for use in insurance premium recommendations.

9.0 Future Work

The algorithm using visual words and spatial histograms is a very interesting approach, however we feel
that using a SVM classifier is not the proper way to treat the samples. The new feature space makes
them a good target for better algorithms for multiclass classification and approaches that requires lots of
data, like neural networks. The system will take long to build, as the computations of the histograms and
the training of the net are long processes, however we think that it will achieve better results.

10.0 Task Assignment and Responsibilities

Task

Description

Responsible

Experiment with simple
methods

Try some simple methods like
KNN and LDAC with simple
preprocessing like PCA

Luis and Andrei

Create logloss function

Create a logloss function as
described in the kaggle
competition

Andrei

Debugging implausible results

Figure out why we were getting
99% accuracy with incredibly
simple methods

James and Luis

Probabilistic KNN

Experiment with a modified
version of KNN that gives
probabilities of being in a class

Andrei




Experiment with HOG features Use more complex features to James
better explain data
Experiment with multiclass How can we use SVM in a James
learning for binary classifiers multiclass setting?
Base code for loading data Loading, grayscaling, resizing Luis
and creating numeric datasets
Visual words and spatial Represent the images via visual | Luis
histograms words and classify them using
spatial histograms as features
Describe Domain of Application [ Detail introduction section Cole
including application domain,
kaggle summary, dataset
summary, and decisions
Exploratory Data Analysis Prepare EDA to review dataset Cole
and gain insights to be used in
models
Convolutional Neural Network Develop and analyse the CNN Cole
model
Final Report and Presentation Document, report and present All
Compilation final results and methodologies
11.0 Gantt Diagram of Tasks Planning
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